3.1065 \(\int \frac{x^{3/2}}{a+b x^2+c x^4} \, dx\)

Optimal. Leaf size=331 \[ \frac{\sqrt [4]{-\sqrt{b^2-4 a c}-b} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}}-\frac{\sqrt [4]{\sqrt{b^2-4 a c}-b} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}}+\frac{\sqrt [4]{-\sqrt{b^2-4 a c}-b} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}}-\frac{\sqrt [4]{\sqrt{b^2-4 a c}-b} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}} \]

[Out]

((-b - Sqrt[b^2 - 4*a*c])^(1/4)*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*c^(
1/4)*Sqrt[b^2 - 4*a*c]) - ((-b + Sqrt[b^2 - 4*a*c])^(1/4)*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*
a*c])^(1/4)])/(2^(1/4)*c^(1/4)*Sqrt[b^2 - 4*a*c]) + ((-b - Sqrt[b^2 - 4*a*c])^(1/4)*ArcTanh[(2^(1/4)*c^(1/4)*S
qrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*c^(1/4)*Sqrt[b^2 - 4*a*c]) - ((-b + Sqrt[b^2 - 4*a*c])^(1/4)
*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*c^(1/4)*Sqrt[b^2 - 4*a*c])

________________________________________________________________________________________

Rubi [A]  time = 0.403399, antiderivative size = 331, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 5, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {1115, 1374, 212, 208, 205} \[ \frac{\sqrt [4]{-\sqrt{b^2-4 a c}-b} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}}-\frac{\sqrt [4]{\sqrt{b^2-4 a c}-b} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}}+\frac{\sqrt [4]{-\sqrt{b^2-4 a c}-b} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}}-\frac{\sqrt [4]{\sqrt{b^2-4 a c}-b} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}} \]

Antiderivative was successfully verified.

[In]

Int[x^(3/2)/(a + b*x^2 + c*x^4),x]

[Out]

((-b - Sqrt[b^2 - 4*a*c])^(1/4)*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*c^(
1/4)*Sqrt[b^2 - 4*a*c]) - ((-b + Sqrt[b^2 - 4*a*c])^(1/4)*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*
a*c])^(1/4)])/(2^(1/4)*c^(1/4)*Sqrt[b^2 - 4*a*c]) + ((-b - Sqrt[b^2 - 4*a*c])^(1/4)*ArcTanh[(2^(1/4)*c^(1/4)*S
qrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*c^(1/4)*Sqrt[b^2 - 4*a*c]) - ((-b + Sqrt[b^2 - 4*a*c])^(1/4)
*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*c^(1/4)*Sqrt[b^2 - 4*a*c])

Rule 1115

Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[
k/d, Subst[Int[x^(k*(m + 1) - 1)*(a + (b*x^(2*k))/d^2 + (c*x^(4*k))/d^4)^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[
{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]

Rule 1374

Int[((d_.)*(x_))^(m_)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[(d^n*(b/q + 1))/2, Int[(d*x)^(m - n)/(b/2 + q/2 + c*x^n), x], x] - Dist[(d^n*(b/q - 1))/2, Int[(d*x)^(m
 - n)/(b/2 - q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n,
 0] && GeQ[m, n]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^{3/2}}{a+b x^2+c x^4} \, dx &=2 \operatorname{Subst}\left (\int \frac{x^4}{a+b x^4+c x^8} \, dx,x,\sqrt{x}\right )\\ &=\left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx,x,\sqrt{x}\right )+\left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx,x,\sqrt{x}\right )\\ &=\frac{\sqrt{-b-\sqrt{b^2-4 a c}} \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{\sqrt{b^2-4 a c}}+\frac{\sqrt{-b-\sqrt{b^2-4 a c}} \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{\sqrt{b^2-4 a c}}-\frac{\sqrt{-b+\sqrt{b^2-4 a c}} \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{\sqrt{b^2-4 a c}}-\frac{\sqrt{-b+\sqrt{b^2-4 a c}} \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{\sqrt{b^2-4 a c}}\\ &=\frac{\sqrt [4]{-b-\sqrt{b^2-4 a c}} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}}-\frac{\sqrt [4]{-b+\sqrt{b^2-4 a c}} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}}+\frac{\sqrt [4]{-b-\sqrt{b^2-4 a c}} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}}-\frac{\sqrt [4]{-b+\sqrt{b^2-4 a c}} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \sqrt{b^2-4 a c}}\\ \end{align*}

Mathematica [C]  time = 0.0254934, size = 46, normalized size = 0.14 \[ \frac{1}{2} \text{RootSum}\left [\text{$\#$1}^4 b+\text{$\#$1}^8 c+a\& ,\frac{\text{$\#$1} \log \left (\sqrt{x}-\text{$\#$1}\right )}{2 \text{$\#$1}^4 c+b}\& \right ] \]

Antiderivative was successfully verified.

[In]

Integrate[x^(3/2)/(a + b*x^2 + c*x^4),x]

[Out]

RootSum[a + b*#1^4 + c*#1^8 & , (Log[Sqrt[x] - #1]*#1)/(b + 2*c*#1^4) & ]/2

________________________________________________________________________________________

Maple [C]  time = 0.259, size = 45, normalized size = 0.1 \begin{align*}{\frac{1}{2}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}c+{{\it \_Z}}^{4}b+a \right ) }{\frac{{{\it \_R}}^{4}}{2\,{{\it \_R}}^{7}c+{{\it \_R}}^{3}b}\ln \left ( \sqrt{x}-{\it \_R} \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3/2)/(c*x^4+b*x^2+a),x)

[Out]

1/2*sum(_R^4/(2*_R^7*c+_R^3*b)*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{\frac{3}{2}}}{c x^{4} + b x^{2} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

integrate(x^(3/2)/(c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 1.76733, size = 5355, normalized size = 16.18 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

-2*sqrt(sqrt(1/2)*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 -
 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*arctan(1/2*(sqrt(1/2)*(b^4 - 8*a*b^2*c + 16*a^2*c^2 - (b^7*
c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))*
sqrt(sqrt(1/2)*(b^2 - 4*a*c)*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^
2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)) + x)*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3
)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)) - sqrt(1/2)*
(b^4 - 8*a*b^2*c + 16*a^2*c^2 - (b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)/sqrt(b^6*c^2 - 12*a*b^4
*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))*sqrt(x)*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a
*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b + (b^4*c
 - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2
+ 16*a^2*c^3)))/a) + 2*sqrt(sqrt(1/2)*sqrt(-(b - (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^
3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*arctan(-1/2*(sqrt(1/2)*(b^4 - 8*a*b^2*c
 + 16*a^2*c^2 + (b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^
2*c^4 - 64*a^3*c^5))*sqrt(sqrt(1/2)*(b^2 - 4*a*c)*sqrt(-(b - (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 -
 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)) + x)*sqrt(-(b - (b^4*c - 8*a
*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a
^2*c^3)) - sqrt(1/2)*(b^4 - 8*a*b^2*c + 16*a^2*c^2 + (b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)/sq
rt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))*sqrt(x)*sqrt(-(b - (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3
)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*sqrt(sqrt(1
/2)*sqrt(-(b - (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/
(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))/a) + 1/2*sqrt(sqrt(1/2)*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqr
t(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*log((b^4*c - 8*a
*b^2*c^2 + 16*a^2*c^3)*sqrt(sqrt(1/2)*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^
3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^
2*c^4 - 64*a^3*c^5) + sqrt(x)) - 1/2*sqrt(sqrt(1/2)*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2
 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*log(-(b^4*c - 8*a*b^2*c^2
 + 16*a^2*c^3)*sqrt(sqrt(1/2)*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a
^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 -
64*a^3*c^5) + sqrt(x)) - 1/2*sqrt(sqrt(1/2)*sqrt(-(b - (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*
b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*log((b^4*c - 8*a*b^2*c^2 + 16*a^2
*c^3)*sqrt(sqrt(1/2)*sqrt(-(b - (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^
4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^
5) + sqrt(x)) + 1/2*sqrt(sqrt(1/2)*sqrt(-(b - (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 +
 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*log(-(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)*sq
rt(sqrt(1/2)*sqrt(-(b - (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a
^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5) + sqr
t(x))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(3/2)/(c*x**4+b*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{\frac{3}{2}}}{c x^{4} + b x^{2} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

integrate(x^(3/2)/(c*x^4 + b*x^2 + a), x)